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For the Herrnite-Fejer interpolation at the zeros of the Jacobi polynomials P~'P)

it is shown, with the aid of the Bohman-Korovkin theorem, that the sequence of
interpolation polynomials converges for every continuous f, pointwise, for Ixl < 1
and IX, fJ> -1 and that the convergence is uniform in every closed subinterval
[ -1 + <5, 1 - <5], <5 > O. Moreover, there is uniform convergence for Ixl';;; 1 if
max(lX, fJ) < O. To prove this result of Szego, we show that the Hermite-Fejer
functionals are asymptotically positive and that the application of a functional of
that type to the test function gx: t --+ (x - t)2 yields a constant multiple of {P~<x'P)}2.

Our methods may also be used to prove an analogous convergence result for the
generalized Hermite-Fejer interpolation with Jacobi nodes of multiplicity 4.
:D 1985 Academic Press, Inc.

1. INTRODUCTION

The aim of this article is to show that the convergence results of Szego
[8, 9] for the Hermite-Fejer interpolation may be proved via the
Bohman-Korovkin theorem on the convergence of sequences of positive
linear functionals, taking advantage of special properties of Jacobi
polynomials (bounds for the zeros and the sup-norm, Gaussian
quadrature). Fejer [1] and Szego [8, 9] proved their convergence
theorems for Hermite-Fejer interpolation directly without the elegant
mechanism of the Bohman-Korovkin theory which was not yet known at
that time; nevertheless positivity arguments played a central role in their
proofs. Later the Bohman-Korovkin theorem was used as a powerful
method for an elegant proof of the convergence results of Fejer and Szego
in case of p}:.Pl-nodes with max(a, p) < 0 and for some generalizations of
Lobatto type where the Hermite-Fejer operators are positive (cf. de Yore
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[10J, Knoop [4]). But the possibility to prove Szego's convergence
theorem for arbitrary (x, p> -1 and Ixl < 1 with the aid of the Bohman
Korovkin theorem seems to be remained unnoticed until now.

In this article we show that the Hermite-Fejer functional at a fixed
position x with Ixl < 1 and for arbitrary Jacobi nodes may be splitted into
a positive functional and a perturbation term which has arbitrary small
norm if the number of nodes increases. In this sense the Hermite-Fejer
functionals are asymptotically positive and this property in connection with
the convergence for the test function gx: t -+ (x - t)2 guarantees the con
vergence of the Hermite-Fejer interpolation for all continuous functions. In
this context we point to the fact that an application of the Hermite-Fejer
operator to gx followed by an evaluation at the point x yields a polynomial
which is a constant multiple of [P~·tI)Y In this way the convergence for
the test function gx is easily proved. Altogether we get the convergence
theorem of Szego, namely that for every continuous f the sequence of
Hermite-Fejer interpolation polynomials to the zeros of the Jacobi
polynomial P~,P) converges to f pointwise for all x with Ixi < 1 and
uniform in every closed subinterval provided rx, P> -1; the convergence is
uniform in Ixl ~ 1 if rx, P> -1 and max(rx, P) < O. If we generalize the
Hermite-Fejer problem allowing nodes of multiplicity 4, we get by similar
arguments analogous results; the generalized Hermite-Fejer interpolation
converges pointwise for Ixl < I and uniform in closed subintervals for
arbitrary (x, P~ -j and the convergence is uniform in Ixl ~ 1 if max
(rx, P) < -i. We point to the fact that with respect to the parameters rx, P
our convergence results cover the known convergence areas.

2. CONVERGENCE FOR THE TEST FUNCTION

We start with the definition of the Hermite operator

H m : C I
[ -1,1] -+ 1'C2m_I'

where xI' =x~m), J1, = 1,..., m, is the set of nodes with -1 ~ XI < ... < x m~ 1
and

m

Hmf = L {j(XI') /1'0 + !'(xl') /I'I}'
1'=1
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m

COm(X)= n (X-X p ),

p=1

The associated Hermite-Fejer operator

then has the representation

m

Fmf = L f(x/l) l/lo,
/l=1

To determine Fmgx, gx: t- (X-t)2, we note that

Then it follows

m

gx=Fmgx-2 L (X-X/l)llll'
J1=1

As gAx) = 0, we get

m

(Fmg x )(x)=2 L (x-x/l)IJ1I(x)
J1=1

m

= 2 L (x - XJ1)2 {li X)}2
/l=1

m 2
= {W m (X)}2 L [ I ( )]2'

J1=1 (Om XJ1

Now we consider the special case of Jacobi nodes and use the notation
F',:,P) instead of Fm' Let

(
m + CX)-1co = P(a.,P)

m m m

with cx, {3 > -1. Then in the relation
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the sum is related to the weights

A. =2H ,8+1F(m+iX+l)r(m+ fJ +l)(I_x2 )-1 {P(a.,,81'(X )}-2
p. mlF(m+iX+fJ+ 1) p. m p.

of Gauss-Jacobi quadrature (cf. Szego [9, p, 352]), It follows

m

(£<,:,,81gx)(X) = {p~,,81(X) F C!:,,81 L A. p.(l - X~)
p.~1

with

C(a.,,81:= 2-a.-,8 m! F(m+iX+fJ+ 1)
m F(m + iX + 1) F(m + fJ + 1)

As

we get

157

LEMMA 1. If the Hermite-Fejer operator £<,:,,8) is applied to the test
function gx = (x - ' f it follows for arbitrary iX, fJ> -1

where

q(a.,,81:= gr(iX+2)r(p+2) m!r(m+iX+p+l)
m F(iX+fJ+4) F(m+iX+1)F(m+fJ+1)

= 0(1) as m -+ 00.

An application of a result of Szego [9, Theorem 7.32.2, p. 169] now yields

THEOREM 1. One has as m -+ 00

(1) (F,:,,8Jgx(x)=o(I),pointwiseforallxwith Ixl<l, ifa,fJ> -1,

(2) (F,:,,8Jgx )(x)=o(I), uniform for all x with Ixl~l-b,b>O, if
iX, fJ> -1, and

(3) (F,:,,81gx)(x)=o(I), uniform for all x with Ixl~l, ifiX,fJ>-1
and max(a, fJ) < O.

640/44/2-5
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Remark 1. Since

F. LOCHER

P( -1/2. ~ 1/2) = (m - 1/2) T
m m'm

we get from Lemma 1 the well-known relation (cf. de Vore [8, p. 43])

3. ASYMPTOTIC POSITIVITY OF THE HERMITE-FEJER FUNCTIONALS

Now we consider the Hermite-Fejer functional F,:;'!) defined by

Fl,:!)j:= (F,:;,fJ)j)(x).

The starting point for our positivity considerations is the representation (cf.
Szego [9, (14.17) and (14.5.2)]

m

F,:;'!)j= L j(x!,)u!,(x){l!,(x)f
1'=1

with

( )
_ 1- X[IX - /1 + (IX + /1 + 2) x!'] + (IX - /1) x!' + (IX + /1 + 1) x~

uJix-I 2 •
-xJi

For the operator norm of F,:;!), we get

m

IIF':;!)II = L IU!,(x)1 {l!,(X)}2,
1'=1

whence follows

m m

II F,:;'!) II = L u!,(x){IJi(x)}2- L ujJ(x){IJi(x)}2

m m

= L UJi(x) {lJi(x) }2 - 2 L uJi(x){lix)}2
jJ~1 1'=1

u.(x) <0

m

=1-2 L ujJ(x){lix)V
jJ=1

u.(x)<O
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It is seen that F,:!) is a positive functional in the usual sense if the sum is
empty, and we say that F.:!) is an asymptotically positive functional if

m

N!,:!):= -2 L UJl(X)g,(x)} 2
-+ 0

Jl=1
".(x) < 0

as m -+ 00.

Since UJl(XJl) = 1, one has uJl(x»O if Ix-xJlI is small. Then for fixed x with
Ixi ~ 1 there exist natural numbers fl = fl(X) such that uJl(x) > O. These
heuristics allow the conjecture that in an e-neighbourhood of x no nodes
with uJl(x) < 0 lie where e> 0 and independent of m. To verify this conjec
ture, we consider the quadratic polynomial corresponding to the
numerator of uJl

pAt) = 1- X[IX - fJ + (IX + fJ + 2) t] + (IX - fJ) t + (IX + fJ + 1) t2

= 1- x2- [ (IX + fJ + 1) t + (IX - fJ- x)] (x - t).

For Ixi < 1, we have

pA -1) =2(fJ + 1)(1 +x»O,

pAx) = 1 - x 2 > 0,

pA 1) =2( IX +1)(1- x) > O.

Thus, we have shown that from UJl(x) <0 the three estimates

follow where e=e(x, IX, fJ) > 0 and independent of m. For Ixl = 1, we con
sider only the case max(rx, fJ) ~ 0, where F,:!) is a positive functional so
that N!,:!)=O. Then it follows for Ixl'< 1,

m

IIN;:!)II = -2 L uix){IJl(x)}2~
Jl=1

".(x) < 0

~ I[l-x[rx-fJ + (IX + fJ + 2) xJl] + (IX-fJ)XJl + (rx+ fJ + 1)x~] [P!,:./I)(X)]21
JlL:! 1/2(1-x~)(x-xJl)2 [p!,:./I)I(XJl)Y

Ix-x.ul~£

m 1
L (1-x2)[P(e<./I)I(x )]2'
Jl~! Jl m Jl

Ix--x.1 ;;>e

where p is an upper bound of

11-x[IX - fJ + (IX + fJ +2) xJl] + (IX- fJ) xJl + (IX + fJ+ 1) x~l,
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e.g.,
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p = 1 + 2 lex - PI + (ex + P+ 2) + lex + P+ 11.

Moreover, if we compare to the Gauss-Jacobi quadrature formula, we get
(cf. Szego [9, (15.3.1)])

m 1

L (l-x2)[PICl,P)I(x )]2
1'=1 I' m I'

Ix-xpl ;;>e

m 1

::::;; L (I-X2)[PICl,P)'(X )]2
1'=1 I' m I'

= m!r(m+ex+p+l) 2-Cl-(J~1 f A.
F(m + ex + 1) F(m + P+ 1) I' = 1 I'

m! F(m + ex + P+ 1) r(ex + 1) F(p + 1)

r(m + ex + 1) F(m + P+ 1) F(ex + P+ 2)

=0(1) as m--+oo.

Thus it follows for Ixl < 1,

II N!:!) II = 0(1)[P!:,(J)(x)]2 as m --+ 00,

and we conclude the following (cf. Szego [9, Theorem 7.32.1])

LEMMA 2. For the functionals N!:!), one has the estimate

Ixl < 1, ex, P> -1,
Ixl ::::;; 1, ex, P> -1 and max(ex, P) < o.

Altogether it follows

THEOREM 2. For the Hermite-Fejer functionals F,:!), one has the
estimates as m --+ 00

IIF!:!)II = 1+ O(l){ p!:,(J)(X)}2

{
if Ixl < 1, ex, P> -1.

=1+01( ) if Ixl::::;; 1, ex, P> -1 and max(ex, P) < o.
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4. THE CONVERGENCE OF HERMITE-FEJER INTERPOLATION

AT JACOBI NODES

161

According to a well-known result of Szego [9, p. 339 f.] the Hermite
Fejer operators Fm<X.P) are positive for all m= 1, 2,..., iff max(lX, p) ~ O.
Therefore the Bohman-Korovkin theorem may be applied to the sequence
F;:·P) only for those values of iX, p. But we may instead consider the positive
functional F;:1) - N':,_,!). Then we have for Ixl ~ 1

Now we apply the quantitative version of the Bohman-Korovkin theorem
(de Vore [10, Theorem 2.3, p. 28 f.]) to F':.!) N':,!). Setting

iX~(x):= (P<m"1)gx)(x)+4I1N~"1lll,

eo: t -+ 1,

we get since

the following estimate

I(F':,·Plf)(x) - f(x)1 ~ {If(x)1 + I} IIN':,!lll + {1 + IIN':,!)II

+ (1 + IIN':.!)1I)1/2} w(J, liXm(x)I).

We now apply Theorem 1, Lemma 2, and Theorem 2 getting

2 _ {ifiXm(X) - 0(1) if
Ixl < 1, IX, P> -1,
Ixl ~ 1, IX, P> -1 and max(lX, P) < 0

and

I(Fia,Plf)(x)- f(x)1 =0(1) {~f Ixl < 1, iX, P> -1,
m if Ixl ~ 1, IX, P> -1 and max(iX, P) < o.

We point to the fact that the above estimations moreover show that the
convergence is uniform in every subinterval [-1 + b, 1- b], b > 0, if
iX, P> -1, and in the whole interval [ -1, 1] if max(iX, P) < o.

THEOREM 3. The sequence of Hermite-Fejer interpolation polynomials
F;:·P)f converges for every f E C[ -1, 1] to f

(i) pointwise for all x with Ixl < 1, if IX, P> -1,

(ii) uniform for all x with Ixl ~ 1- b, b > 0, if IX, P> -1,

(iii) uniform for all x with Ixl ~ 1, if iX, P> -1 and max(iX, P) < o.



162 F. LOCHER

5. HERMITE-FEJER IN~POLATIONAT JACOBI NODES

OF MULTIPLICITY 4

The Hermite-Fejer interpolation problem has been generalized in the
following way (cf. [2,4, 5]):

For the zeros of the Jacobi polynomial p!::,!Jl, we consider the operator

K(rx,!J). C[ - 1 1] -+ 1t4m· , m-l

with
m

(K!::,!J)f)(x):= L !(x/J u~<X,!J)(X)g,(X)}4,
1'=1

where II' as above and

Y+<5x 11 (y +<5x )2u(rx.fJ)(x),= 1-2--1' (x-x )+ I' (X-X)2
I' ' 1 _ x2 I' 6 1 _ x2 I'

I' I'

~(X-XI')2(1_2Y+(2<5-1)XI'(_ ))+6 1 2 1 2 X XI'-X/l -X/l

X [4(M - <5)(1- X~) - 8x/l(Y +<5X/l)]

_[(Y +<5XI')
3

~ (y +<5x/lf
1-x~ +3

X
/l (1-X~)3

1 y +<5X/l ] 3
+6(<5+2)(1_x~)2 (X-XI') ,

y:= IX-P,

<5 := IX +P+ 2,

M:= m(m + IX + P+ 1).

We point to the fact that K!::·fJ)! is nothing else but the "derivative-free"
part of the generalized Hermite interpolation polynomial to! at the nodes
xI' with multiplicity 4, The convergence problem for the generalized
Hermite-Fejer interpolation may be treated with methods which are
similar to those used above.

First, we show convergence for the test polynomial gx. We have

(K(rx,!J)g )(X) = {P(<x,!J)(X)}2 ~ 1-x~-2(y+<5xl')(x-x/l) {I (X)}2
m x m L. (1-x2)[P(rx,!J)'(x )]2 /l

/l~1 I' m I'

{ (rx,fJ) }4 ~ 1 {11 (j 2+ Pm (x) L. (1- 2)2 [P(a.,!J)'( )]4 6" (y + X/l)
1'=1 X/l m X/l
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+!(t- 2y+(2b-l)xl' (X-X »)
6 1-x2 II

II

X [4(M - b)(l- x~) - 8xl'(Y +bxlI )]

_('}'+8XII )3 +~x ('}'+8XIl )2
1_X2 3 II 1- x2

II II

+~«;+2)(Y+bXII») (X-XII)}

,;,

L \11l(x)l::;: O(log m)
11=1
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as m -+ 00 if Ix! < 1,

as m -+ 00 if Ixi ~ 1.

(cf. Szego [9, p. 335 ff.]) we get for the first sum by a similar estimation as
in Section 3

{P((Y.,P)( )}2 ~ 1- x~ - 2(y + (;XII)(x - XII) {I (X)}2
m X L... (1_x2)[pl(Y.,P)I(X)]2 II.

11=1 II m II

::;: {p~.P)(x) PO(log2 m)

~I:(~::mm~~u(.,_,,,)
For the second sum we note

1 2
--2=O(m)
1-x

lI

and on the other hand we compare to the Gauss-Jacobi weights (Szego [9,
(15.3.1)]) and get

m 1 m

L (l-X2)2 [pl(Y.,P)'(x )r=O(l) L A~.
11=1 II m II 11=1

From [9, (15.3.14)] we deduce

~ O(m I)

= ( O(1og m m -I )

if min«(X, P) > -~,

if min«(X, P) = -~
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(cf. also [4]). Altogether we have as m -. 00,

(K~,P)gJ(x)

m

= {P~,P)(X)}2 O(log2 m)+ {P~,P)(X)}4O(m2) L A~

1'=1

if min(IX, P) ~ -~, Ixl < 1,

m2max(cx,p,-O.5) O(log m) +m4max(cx,p,-O.5)+ 1 O(log m)

if min(IX, P) ~ -~, Ixl :;;; 1.

{
if

= 0(1) if
min(IX, P) ~ -i, Ixl < 1,

(IX, P)E [-i, -!), Ixl:;;; 1.

So we get the following convergence theorem:

THEOREM 4. The Hermite-Fejer interpolation of multiplicity 4 applied to
the test function gx is convergent in the following sense

Ixl < 1, IX, P~ -i,
Ixl :;;; 1, (IX, P) E [ -i,-i).

To show the asymptotic positivity of the functionals K~1) with

K~1)f := (K~,P)f)(x)

we analyse the position of the zeros of

y+ M 11 (Y + M)2 2u (t)=1-2--(x-t)+- -- (x-t)
x 1 _ t 2 6 1- t2

~(X-t)2{1_ 2y +(20-1)t( _ )}
+6 1 2 1 2 X t-t -t

x [4(M - 0)(1- t2) - 8t(y + Ot)]

[(
y+Ot)3 1 (y+<5t)2 1 y+<5tJ 3.

- I-t2 +)t(l_t2)3+'6(0+2)(I_t2)2 (x-t) ,

here we have 0 > 0 and without loss of generality y~ O. The demand
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is equivalent to

_1_ ~ t-x {I 2y+(2c5-l)t( _ )}
+6 (1 2)2 + 1 2 t xt-x -t -t

x [4(M - c5)(1 - t2
) - 8t(y + c5t)J

= -2 y+c5t _~(Y+c5t) (t-x)
1- t2 6 1- t2

[(
Y+c5t)3 1 (y+c5t) 1 y+c5t ] 2

- I-t2 +"jt(l_t2 )3+(j(c5+2)(I_t2 )2 (t-x).

Let x be fixed with Ixl < 1. Then 8 1 > 0 exists such that

165

(5.1 )

1 2y + (2c5 - 1) t ( ) 0+ 1 2 t-x ~-t

As M = O(m 2
), there exists 82> 0 such that

4(M - c5)(I- t2
) - 8t(y + c5t) ~ 0

if Ix - tl ~ 82 and m~ mo(82)' Therefore l = l(x, tx, P) > 0 exists such that for
m ~ mo(l) the left side in (5.1) is negative if x -l~ t < x and positive if
x < t ~ x + l and unbounded if one approaches the point x. As the right
side is bounded at x, there exists 8 =8(X, tx, P) > 0 such that for Ix - tl ~ e
and m~ mo(e) no zero of ux exists. Therefore from u~<x'P)(x) < 0 the
inequality Ix - xI'I > e follows. Altogether we have as m -+ 00,

m

IIK~!)II = 1-2 L ul'(x){ll'(x)}4
1'=1

u"(x) <0

m

= 1+ {P~·P)(X)}4 O(m2
) L A.~.

1'=1

Now we use our estimations from the proof of Theorem 4 getting

pointwise if Ixl < 1 and min(tx, P) ~ -~,

IIK~!)II = 1+0(1) uniform if Ixl ~ l-c5, c5>O and min(tx, P)~ -i,
uniform if Ixl ~ 1 and (iX, P) E [ _~, _!)2.
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THEOREM 5. The functionals K!::!) are asymptotically positive as m -+ 00,

(i) for Ixl < 1 if min(lX, fJ)~ -~,

(ii) for Ixl ~ 1 if (IX, fJ) E [ -t -if
From Theorems 4 and 5 we now conclude the convergence theorem for the
Hermite-Fejer interpolation with Jacobi nodes of multiplicity 4
additionally noting that the convergence is uniform in compact subinter
vals.

THEOREM 6. The sequence of Hermite-Fejer interpolation polynomials
with Jacobi nodes of multiplicity 4 converges for every f E C[ -1, 1] to f

(i) pointwise for all x with Ixl < 1, if min (IX, fJ) ~ -i,
(ii) uniform for all x with Ixl ~ I-b, b>O, ifmin(lX, fJ)~ -~,

(iii) uniform for all x with Ixl ~ 1, if (IX, fJ) E [ -~, -i)2.
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